Aluminosilicate polymers - geopolymers

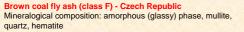
http://www.geopolymers.net

František Škvára¹, Lubomír Kopecký², Lenka Myšková¹, Vít Šmilauer², Lucie Alberovská¹,

Lenka Vinšová¹

¹Department of Glass and Ceramics, ICT Prague, CZ-166 28 Prague 6, Technická 5

+ Silica sand (+ event. ground limestone) Homogenization and filling form —


Storage at temperature of 20 °C and R.H. 35-40%

²Czech Technical University in Prague, Faculty of Civil Engineering, Department of Structural Mechanics, CZ-166 29 Prague, Thákurova 7,

Raw materials

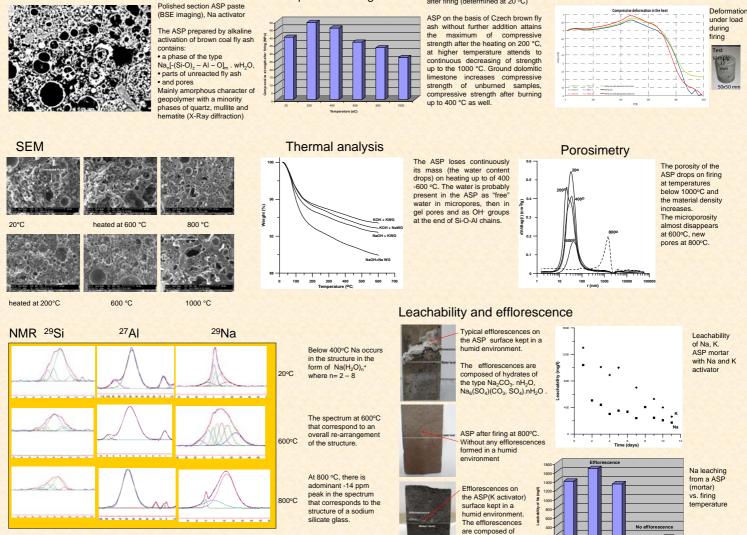
Microstructure

Preparation of ASP (paste, mortar)

loane, normano									
Oxide	SiO ₂	AI_2O_3	Na ₂ O	K ₂ O	CaO	MgO	Fe ₂ O ₃	TiO ₂	
%	53,52	32,87	0,33	2,05	1,80	0,85	5,89	1,89	
1000	1	C 10 10 10 10 10 10 10 10 10 10 10 10 10	COLORIDA NO.			1.1.1.1.1.1.1.1	0.000		

Silica sand (0 - 4, 4 - 8, 8 - 16), ground limestone, dolomitic limestone

Compressive strength


Strength values of the ASP (mortar) after firing (determined at 20 °C)

Fly ash + Alkaline activator (NaOH or KOH + Na or K silicate ("water glass") Ms=1.0-1.6, Na₂O, K₂O 6-10%, w = 0.30 - 0.40)

Geopolymeration (80°C, 12 hours, open atmosphere)

Compressive deformation

400 serature (°C)

The Na (and K) bond in the ASP structure is weak and this fact explains the tendency of ASP to efflorescences.

explains the tendency of ASP to effloresce

Conclusions

The aluminosilicate polymer prepared by alkaline activation of brown coal fly ash is a porous body containing an alumino-silicate polymer of the type M_n[-(Si-O)_z - AI - O]_n. wH₂O.
 Si(3AI) could be identified as the main coordination in the ²⁹Si NMR MAS spectra; the Si(2-3AI) coordination was less represented. The Si(0AI) coordination is characterized by a minor representation, which demonstrates an AI penetration into the [SiO₄]⁴ network.

K₂CO₂

• The AIQ⁴(4Si) coordination was identified in the ²⁷AI NMR MAS spectra as predominant.

• Na is obviously bonded in the ASP structure as Na(H₂O)_n and not as Na⁺. The Na (and K) bond in the ASP structure is weak and this fact explains the tendency of ASP material to the formation of efflorescences in a humid environment.

The strength values of the ASP fired at temperatures in the range of 200 – 1000 °C attain their maximum at 200 °C; they decline gradually afterwards. The ASP strength after firing is substantially higher than the residual strength of Portland cement. The firing at temperatures below 1000 °C results in structural changes typical for vitreous materials.
The Na bond in the structure suffers a fundamental change and, starting from 600 °C, the character of the Na bond is the same as that in glassy materials. The Na leaching declines in a very significant way after firing at temperatures above 600 °C and the tendency to the formation of efflorescences disappears.

This study was part of the of research projects Czech Science Foundation Grant 103/08/1639 "Microstructure of inorganic alumosilicate polymers" and CEZ:MSM 6046137302 "Preparation and research of functional materials and material technologies using micro - and nanoscopic methods"